520 research outputs found

    Magnetic Domains and Surface Effects in Hollow Maghemite Nanoparticles

    Full text link
    In the present work, we investigate the magnetic properties of ferrimagnetic and noninteracting maghemite (g-Fe2O3) hollow nanoparticles obtained by the Kirkendall effect. From the experimental characterization of their magnetic behavior, we find that polycrystalline hollow maghemite nanoparticles are characterized by low superparamagnetic-to-ferromagnetic transition temperatures, small magnetic moments, significant coercivities and irreversibility fields, and no magnetic saturation on external magnetic fields up to 5 T. These results are interpreted in terms of the microstructural parameters characterizing the maghemite shells by means of an atomistic Monte Carlo simulation of an individual spherical shell model. The model comprises strongly interacting crystallographic domains arranged in a spherical shell with random orientations and anisotropy axis. The Monte Carlo simulation allows discernment between the influence of the structure polycrystalline and its hollow geometry, while revealing the magnetic domain arrangement in the different temperature regimes.Comment: 26 pages, 8 figures. In press in Phys. Rev.

    Photovoltaic Performance of Ultrasmall PbSe Quantum Dots

    Get PDF
    We investigated the effect of PbSe quantum dot size on the performance of Schottky solar cells made in an ITO/PEDOT/PbSe/aluminum structure, varying the PbSe nanoparticle diameter from 1 to 3 nm. In this highly confined regime, we find that the larger particle bandgap can lead to higher open-circuit voltages (~0.6 V), and thus an increase in overall efficiency compared to previously reported devices of this structure. To carry out this study, we modified existing synthesis methods to obtain ultrasmall PbSe nanocrystals with diameters as small as 1 nm, where the nanocrystal size is controlled by adjusting the growth temperature. As expected, we find that photocurrent decreases with size due to reduced absorption and increased recombination, but we also find that the open-circuit voltage begins to decrease for particles with diameters smaller than 2 nm, most likely due to reduced collection efficiency. Owing to this effect, we find peak performance for devices made with PbSe dots with a first exciton energy of ~1.6 eV (2.3 nm diameter), with a typical efficiency of 3.5%, and a champion device efficiency of 4.57%. Comparing the external quantum efficiency of our devices to an optical model reveals that the photocurrent is also strongly affected by the coherent interference in the thin film due to Fabry-PĆ©rot cavity modes within the PbSe layer. Our results demonstrate that even in this simple device architecture, fine-tuning of the nanoparticle size can lead to substantial improvements in efficiency

    First-principles modeling of unpassivated and surfactant-passivated bulk facets of wurtzite CdSe: a model system for studying the anisotropic growth of CdSe nanocrystals.

    Get PDF
    Equilibrium geometries, surface energies, and surfactant binding energies are calculated for selected bulk facets of wurtzite CdSe with a first-principles approach. Passivation of the surface Cd atoms with alkyl phosphonic acids or amines lowers the surface energy of all facets, except for the polar 0001 facet. On the nonpolar facets, the most stable configuration corresponds to full coverage of surface Cd atoms with surfactants, while on the polar 0001 facet it corresponds only to a partial coverage. In addition, the passivated surface energies of the nonpolar facets are in general lower than the passivated polar 0001 facet. Therefore, the polar facets are less stable and less efficiently passivated than the nonpolar facets, and this can rationalize the observed anisotropic growth mechanism of wurtzite nanocrystals in the presence of suitable surfactants

    Design of Nanostructured Solar Cells Using Coupled Optical and Electrical Modeling

    Get PDF
    Nanostructured light trapping has emerged as a promising route toward improved efficiency in solar cells. We use coupled optical and electrical modeling to guide optimization of such nanostructures. We study thin-film n-i-p a-Si:H devices and demonstrate that nanostructures can be tailored to minimize absorption in the doped a-Si:H, improving carrier collection efficiency. This suggests a method for device optimization in which optical design not only maximizes absorption, but also ensures resulting carriers are efficiently collected
    • ā€¦
    corecore